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Introduction

Consider the task of learning a rule that maps the feature vector x ∈ Rd to outputs y ∈ R.
Furthermore you are given a set of labelled observations (xi, yi) for i = 1, . . . , n. We
restrict ourselves to linear mappings. That is, we need to find w ∈ Rd such that

x>i w ≈ yi, for i = 1, . . . , n. (1)

That is the hypothesis function is parametrized by w and is given by hw : x 7→ w>x.1 To
choose a w such that each x>i w is close to yi, we use the squared loss `(y) = y2/2 and the
squared regularizor. That is, we minimize

w∗ = arg min
w

1

n

n∑
i=1

1

2
(x>i w − yi)2 +

λ

2
‖w‖22, (2)

where λ > 0 is the regularization parameter. We now have a complete training prob-
lem (2)2.

Using the matrix notation

X
def
= [x1, . . . , xn] ∈ Rd×n, and y = [y1, . . . , yn] ∈ Rn, (3)

we can re-write the objective function in (2) as

f(w)
def
=

1

2n
‖X>w − y‖22 +

λ

2
‖w‖22. (4)

First we introduce some necessary notation.

1We need only consider a linear mapping as opposed to the more general affine mapping xi 7→ w>xi +β,
because the zero order term β ∈ R can be incorporated by defining a new feature vectors x̂i = [x1, 1] and
new variable ŵ = [w, β] so that x̂>i ŵ = x>i w + β

2Excluding the issue of selection λ using something like crossvalidation https://en.wikipedia.org/

wiki/Cross-validation_(statistics)
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Notation: For every x,w,∈ Rd let 〈x,w〉 def= x>y and let ‖x‖2 =
√
〈x, x〉. Let A ∈ Rd×d

be a matrix and let σmin(A) and σmax(A) be the smallest and largest singular values of A
defined by

σmin(A)
def
= min

x∈Rd, x 6=0

‖Ax‖2
‖x‖2

and σmax(A)
def
= max

x∈Rd, x 6=0

‖Ax‖2
‖x‖2

. (5)

Finally, a result you will need, if A is a symmetric positive semi-definite matrix the
largest singular value of A can be defined instead as

σmax(A) = max
x∈Rd, x 6=0

〈Ax, x〉2
‖x‖22

= max
x∈Rd, x 6=0

‖Ax‖2
‖x‖2

. (6)

Therefore
〈Ax, x〉
‖x‖22

≤ σmax(A), ∀x ∈ Rd \ {0}. (7)

and
‖Ax‖2
‖x‖2

≤ σmax(A), ∀x ∈ Rd \ {0}. (8)

We will now solve the following ridge regression problem

w∗ = arg min
w∈Rd

(
1

2n
‖X>w − y‖22 +

λ

2
‖w‖22

def
= f(w)

)
, (9)

using stochastic gradient descent and stochastic coordinate descent.

Exercise 1 : Stochastic Gradient Descent (SGD)

Some more notation: Let ‖A‖2F
def
= Tr

(
A>A

)
denote the Frobenius norm of A. Let

A
def
= 1

nXX
> + λI ∈ Rd×d and b

def
= 1

nXy. (10)

We can exploit the separability of the objective function (2) to design a stochastic
gradient method. For this, first we re-write the problem Aw = b as different linear least
squares problem

ŵ∗ = arg min
w

1
2‖Aw−b‖

2
2 = arg min

w

d∑
i=1

1
2(Ai:w−bi)2

def
= arg min

w

d∑
i=1

pifi(w), (11)

where fi(w) = 1
2pi

(Ai:w − bi)2, Ai: denotes the ith row of A, bi denotes the ith element of

b and pi =
‖Ai:‖22
‖A‖2F

for i = 1, . . . , d. Note that
∑d

i=1 pi = 1 thus the pi’s are probabilities.
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From a given w0 ∈ Rd, consider the iterates

wt+1 = wt − α∇fj(wt), (12)

where

α =
1

‖A‖2F
, (13)

and j is a random index chosen from {1, . . . , d} sampled with probability pj . In other words,

P(j = i) = pi =
‖Ai:‖22
‖A‖2F

for all i ∈ {1, . . . , d}.

Ex. 1 — Show that the solution ŵ∗ to (11) and the solution to w∗ to (9) are equal.

Ex. 2 — Show that

∇fj(w) =
1

pj
A>j:Aj:(w − w∗) (14)

and that

Ej∼p [∇fj(w)]
def
=

d∑
i=1

pi∇fi(w) = A>A(w − w∗) ,

thus ∇fj(w) is an unbiased estimator of the full gradient of the objective function in (11).
This justifies applying the stochastic gradient method.

Ex. 3 — Let Πj
def
=

A>
j:Aj:

‖Aj:‖22
, show that

ΠjΠj = Πj , (15)

and
(I −Πj)(I −Πj) = I −Πj . (16)

In other words, Πj is a projection operator which projects orthogonally onto Range (Aj:) .
Furthermore, if j ∼ pj verify that

E [Πj ] =

d∑
i=1

piΠi =
A>A

‖A‖2F
. (17)

Ex. 4 — Show the following equality ruling the squared norm of the distance to the
solution

‖wt+1 − w∗‖22 = ‖wt − w∗‖22 −

〈
A>j:Aj:

‖Aj:‖22
(wt − w∗), wt − w∗

〉
. (18)
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Ex. 5 — Using previous answer and analogous techniques from the course, show that the
iterates (12) converge according to

E
[
‖wt+1 − w∗‖22

]
≤

(
1− σmin(A)2

‖A‖2F

)
E
[
‖wt − w∗‖22

]
. (19)
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BONUS

Exercise 2: Stochastic Coordinate Descent (CD)

Consider the minimization problem

w∗ = arg min
x∈Rd

(
f(w)

def
=

1

2
w>Aw − w>b

)
, (20)

where A ∈ Rd×d is a symmetric positive definite matrix, and w, b ∈ Rd.

Ex. 6 — First show that, using the notation (10), solving (20) is equivalent to solving (9).

Ex. 7 — Show that
∂f(w)

∂wi
= Ai:w − bi , (21)

where Ai: is the ith row of A. Furthermore note that w∗ = A−1b, thus

∂f(w)

∂wi
= e>i (Aw − b) = e>i A(w − w∗) . (22)

Ex. 8 — Question 2.3: Consider a step of the stochastic coordinate descent method

wk+1 = wk − αi
∂f(wk)

∂xi
ei, (23)

where ei ∈ Rd is the ith unit coordinate vector, αi =
1

Aii
, and i ∈ {1, . . . , d} is sampled

i.i.d at each step according to i ∼ pi where pi =
Aii

Tr (A)
. Let ‖x‖2A

def
= x>Ax.

First, prove that

‖wk+1 − w∗‖2A =
〈

(I −Π>i )A(I −Πi)(w
k − w∗), wk − w∗

〉
. (24)

Ex. 9 — Question 2.4: Let rk
def
= A1/2(wk − w∗). Deduce from (24) that

‖rk+1‖22 = ‖rk‖22 −

〈
A1/2eie

>
i A

1/2

Aii
rk, rk

〉
. (26)
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Ex. 10 — Finally, prove the convergence of the iterates of CD (23) converge according
to

E
[
‖wk+1 − w∗‖2A

]
≤

(
1− λmin(A)

Tr (A)

)
E
[
‖wk − w∗‖2A

]
(28)

thus (23) converges to the solution.
Hint: Since A is symmetric positive definite you can use that

λmin(A) = inf
x∈Rd,x 6=0

x>Ax

‖x‖22
.

You will need to use that x>Ax ≥ λmin(A)‖x‖22 at some point.

Ex. 11 — Question 2.6: When is this stochastic coordinate descent method faster
than the stochastic gradient method (14) or gradient descent? Note that each iteration of
SGD and CD costs O(d) floating point operations while an iteration of the GD method
costs O(d2) floating point operations (assuming that A has been previously calculated and
stored). What happens if d is very big? What if Tr (A) is very large? Discuss this.
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