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Linear Programming History (1939)

* 1947: George Dantzig, advising

U.S. Air Force, invents Simplex.

* Assignment 70 people to 70 jobs

(more possibilities than particles).



Linear Programming History (1941)
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Army Buﬂds Kllhng Machme ( 1949)

1949 SCOOP: Scientific Computation Of Optimal Programs

Mathematical Programming: Math used to figured out Flight
and logistic programs/schedules



Dantzig, George B. "On the Non-Existence of Tests of 'Student's
Hypothesis Having Power Functions Independent of Sigma." Annals
of Mathematical Statistics. No. 11, 1940 (pp. 186-192).

Dantzig, George B. and Abraham Wald. "On the Fundamental Lemma of
Neyman and Pearson.” Annals of Mathematical Statistics. No. 22
1951 (pp. 87-93).
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The Problem: Linear Programming

def
maXx z = CTX
X

subject to Ax < b,
x >0,

where ¢, x € R", A€ R™*" and b € R™. Equivalently
def o
€
max z = E CixX;
¢ - %
J_

n
subject to Za,-jxj- < b;, fori=1,....,m.
j=1
x > 0.
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|—Simple 2D problem

First example Simplex
The problem

max 4x1 + 2x0
3x1 + 2x0 < 600
4x; + 1xo < 400
x1 > 0,x > 0.

We can solve this graphically:

Frey With level sets =
How to do this systematically?
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LSimpIe 2D problem

First example Simplex
The problem
max 4x1 + 2xo
3x1 4+ 2x0 < 600
4x; + 1xo <400
x1 > 0,x > 0.

Can be transformed into
max 4x; + 2x
x3=600 — 3x3 — 2x
x3 =400 — 4xy — Xxo,
where x3 and x4 are slack variables. This is known as the the dictionary
format and is often written as:
X3 = 600 — 3X1 — 2X2
x, = 400 — 49 — xo
z = 4x1 + 2x
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- Simple 2D problem

First example Simplex
The dictionary format

X3 600 3x1 — 2x
x3 = 400 — 4y — x
z dx; + 2x

admits obvious solution

(x5, x5, x5, x4) = (0,0,600,400).
The objective z will improve if x; > 0. Increasing x; as much as possible

x3>0 = 600—-3x,>0 = x3 <200,
x>0 = 400—4x, >0 = x; <100.

Thus x; < 100 to guarantee x4 > 0. This means x4 will leave the basis

and x; will enter the basis. Using row operations z < z + r», and
n<+<n— %rg to isolate x;

on rows.

X3 300 + 3x 2%
x = 100 — = 2
z 400 —

X+ X 6/33



- Simple 2D problem

First example Simplex

From
X3 = 300 + %X4 — %Xz
x; = 100 — %“ — %
z = 400 - x4 + x

Now we are at the vertex (x7, x3) = (100,0). Next we see that increasing
Xp increases the objective value but

x3>0 = 300—2x>0 = 240> x,
x>0 = 100—2>0 = 400> x.

Increase x> upto 240 while respecting the positivity constraints of x3.
Thus x3 will leave the basis and x; will enter the basis. Performing a row

elimination again via z < z + %rl and rn <+ rn — %rl, we have that

X = 240 + %x4 — %Xg,
xx = 40 - %X4 - %X3
z = 640 — 24 — ix3

Now (x5, x3) = (40, 240). Increasing x4 or x3 will decrease z. THE END .



|—The Fundamental Theorem

Theorem (Fundamental Theorem of Linear Programming)
Let P = {x|Ax = b,x > 0} then either
Q@ P={0}

@ P # {0} and there exists a vertex v of P such that
v € argmingep ' x

© There exists x,d € R" such that x + td € P for all t > 0 and
lim¢ o0 ¢ (x + td) = .
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LNotation

Problem Notation

We will now formalize the definitions we introduced in the examples.
» There are n variables and m constraints
> The linear objective function z = 3~7 ; ¢x;
» The m inequality constraints in standard form

n
> ayx < by, fori€{1,...,m}.
j=1

» The n positivity constraints x; > 0, for j € {1,..., n}.
x! denotes the value of ith variable.
> We call (x7,...,x}) € R" a feasible solution if it satisfies the

inequality and positivity constraints.
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LNotation

Dictionary Notation

» The slack variables (Xpt1, ..., Xntm) € R™ (variables d’écart)

» The initial dictionary

n

Xot1 = b= i ax

X1 = b — Z'] 3:X:

n+i 1 j=1 “U~J
= b n

Xn+m = DPm — Zj:l amjXj
n
z = 2j1G%
» Valid dictionary if m of the variables (x1, ..., Xp+m) can be

expressed as function of the remaining n variables.

» The m variables on the left-hand side are the basic variable (variable
de base). The n variables on the right-hand side are the non-basic
(variable hors-base).
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LNotation

Dictionary Notation

After row elimination operations we have a new basis.

» Basic variable set / C {1,...,n+ m} and non-basic set
J=A{1,....n+ m}\ I with |l/|=mand |J]=n

> Current objective value z* = 377, ¢;x;".

» For each basis set / there is a corresponding dictionary

_ / /. :
xi = bi—=3 i ayx, foriel

* 7o,
4 +ZJ'EJCJ'X17

z

where a;, b, z* € R are coefficients resulting from the row

operations. For this to a feasible dictionary we require that b/ > 0.

> A basic solution: x* = bj for i € | and x7 =0 for j € J.
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[ Notation

Variable entering/leaving the basis

» If jo € J with (:J{0 > 0 then increasing xj, will improve the

objective since
* /.
z=z"+ E CjXj-
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L Notation

Variable entering/leaving the basis

» If jo € J with (:J{0 > 0 then increasing xj, will improve the
objective since
z=2z"+ Z Cixj.

» How much can we increase x;,? Until there is a x; = 0 since

* — bl 5. x*F
X = b= a2 0
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L Notation

Variable entering/leaving the basis
> If jo € J with ¢; > 0 then increasing x;, will improve the

objective smce
z=2z"+ Z G Xj-

» How much can we increase x;,? Until there is a x; = 0 since

= b;_ UoXJo 20 = alJoXJo = b, viel
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LNotation

Variable entering/leaving the basis
> If jo € J with ¢; > 0 then increasing x;, will improve the

objective smce
z=2z"+ Z G Xj-

» How much can we increase x;,? Until there is a x; = 0 since

= b;_ lJoXJo 20 = alJoXJo = b, viel

> If af-jo < 0, then increasing Xj; will increase x
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LNotation

Variable entering/leaving the basis

> If jo € J with ¢; > 0 then increasing x;, will improve the
objective smce
z=2z"+ Z G Xj-

» How much can we increase x;,? Until there is a x; = 0 since

= b§_ lJoXJo 20 = alJoXJo = b, viel

> If a’ < 0, then increasing XJ* will increase x
> Ifa >0 then x* < bi/ a,
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LNotation

Variable entering/leaving the basis

» If jo € J with (:J{0 > 0 then increasing xj, will improve the
objective since
z=2z"+ Z Cixj.

» How much can we increase x;,? Until there is a x; = 0 since

LxE >0 = a.xi < b, Viel.

* /_ i
X;i = b FijoXjo ijo"Jjo

> If af-jo < 0, then increasing Xj; will increase x
/ * / /
> If aj; > 0, then xi < b}/ aj,
» Thus ,
Xi; = _ min

0 . /
lel, a,’.j0>0 a’JO
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LNotation

Variable entering/leaving the basis

> If jo € J with ¢; > 0 then increasing x;, will improve the

objective smce
z=2z"+ Z G Xj-

Jjed
» How much can we increase x;,? Until there is a x; = 0 since
o /_ / .
= b} l_/oX_IO >0 = a,JOxJ0 < b, Viel.

> If a’ < 0, then increasing XJ* will increase x
>Ifa >0 then x* < bi/ a,
> Thus

/
* i
x: = min —-
o
iel, aUO>O aUO
» In this case, which x* = 0 (which i leaves the basis?)
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|—Simplex Algorithm

A Step of the Simplex Method

Input: I ={n+1,....,n+m}, J={1,...,n},a; €R, b; >0, ¢ eR.
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|—Simplex Algorithm

A Step of the Simplex Method

Input: I ={n+1,....,n+m}, J={1,...,n},a; €R, b; >0, ¢ eR.

if ¢/ <0 forall i€ Jthen
STOP; # Optimal point found.
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LSimpIex Algorithm

A Step of the Simplex Method

Input: I ={n+1,....,n+m}, J={1,...,n},a; €R, b; >0, ¢ eR.

if ¢/ <0 forall i€ Jthen

STOP; # Optimal point found.
Choose a variable j to enter the basis from the set jo € {j € J : ¢/ > 0}.
if aj; <0 forall i € J then

STOP; # The problem is unbounded.

13/33



LSimpIex Algorithm

A Step of the Simplex Method

Input: I ={n+1,....,n+m}, J={1,...,n},a; €R, b; >0, ¢ eR.

if ¢/ <0 forall i€ Jthen

STOP; # Optimal point found.
Choose a variable j to enter the basis from the set jo € {j € J : ¢/ > 0}.
if aj; <0 forall i € J then

STOP; # The problem is unbounded.

. . . . . b;
Choose a variable iy to leave the basis from the set iy € arg  min {/’} .

i-el,al’jD >0 a,-jo
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LSimpIex Algorithm

A Step of the Simplex Method

Input: I ={n+1,....,n+m}, J={1,...,n},a; €R, b; >0, ¢ eR.

if ¢/ <0 forall i € J then
STOP; # Optimal point found.
Choose a variable j to enter the basis from the set jo € {j € J : ¢/ > 0}.

if aj;) <0 for all i € J then

STOP; # The problem is unbounded.
. . . . . b!
Choose a variable iy to leave the basis from the set iy € arg  min ,’ .
iel,a’(jo>0 a,-jo
I+ (I\{ib}) and J<+JU{io} > Move ip from basic to non-basic
for i € | do
a..
aj, < aj. — =" aj, > Row elimination on pivot (i, jo).
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- Simplex Algorithm

A Step of the Simplex Method

Input: I ={n+1,....,n+m}, J={1,...,n},a; €R, b; >0, ¢ eR.

if ¢/ <0 forall i € J then
STOP; # Optimal point found.
Choose a variable j to enter the basis from the set jo € {j € J : ¢/ > 0}.

if aj;) <0 for all i € J then

STOP; # The problem is unbounded.
. . . . . b!
Choose a variable iy to leave the basis from the set iy € arg  min ,’ .
iel,a’(jo>0 a,-jo
I+ (I\{ib}) and J<+JU{io} > Move ip from basic to non-basic
for i € | do
aj, < aj. — =" aj, > Row elimination on pivot (i, jo).
iojo
aj, + —aj. and  aj + > Normalize the coefficient of aj
iojo iojo
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- Simplex Algorithm

A Step of the Simplex Method

Input: I ={n+1,....,n+m}, J={1,...,n},a; €R, b; >0, ¢ eR.

if ¢/ <0 forall i € J then
STOP; # Optimal point found.
Choose a variable j to enter the basis from the set jo € {j € J : ¢/ > 0}.

if aj;) <0 for all i € J then

STOP; # The problem is unbounded.
. . . . . b!
Choose a variable iy to leave the basis from the set iy € arg  min ,’ .
iel,a’(jo>0 a,-jo
I+ (I\{ib}) and J<+JU{io} > Move ip from basic to non-basic
for i € I do
aj, < aj. — =" aj, > Row elimination on pivot (i, jo).
iojo
aj, + —aj. and  aj + > Normalize the coefficient of aj
oo iojo
’ ’ Cjo / ..
¢ c — —>a. > Update the cost coefficients.
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- Simplex Algorithm

A Step of the Simplex Method

Input: I ={n+1,....,n+m}, J={1,...,n},a; €R, b; >0, ¢ eR.

if ¢/ <0 forall i € J then
STOP; # Optimal point found.
Choose a variable j to enter the basis from the set jo € {j € J : ¢/ > 0}.

if aj;) <0 for all i € J then

STOP; # The problem is unbounded.
. . . . . b!
Choose a variable iy to leave the basis from the set iy € arg  min ,’ .
iel,a’(jo>0 a,-jo
I+ (I\{ib}) and J<+JU{io} > Move ip from basic to non-basic
for i € | do ,
al « al. — ,UO ajy: > Row elimination on pivot (io, jo)-
iojo
aj, + —ap.  and  ap; + - > Normalize the coefficient of aj
‘oJo '0Jo
I -
¢ c — —>a. > Update the cost coefficients.
fojo
I+~ 1U{jo} and J<+ (J\{0b}) > Move jo from non-basic to basic
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LSimpIex Algorithm

How to choose who enters the basis?

oefjed: >0}

© The mad hatter rule: Choose the first one you see  costs: O(1)

@ Dantzig's 1st rule: jo = arg max ¢; cost: O(n)

© Dantzig's 2nd rule: Choose jy that maximizes the increase in z.

b;

o =argmaxq ¢ min § — costs : O(nm

Jo & { J ie/,a,-,>0{a,-j (nm)
Effective, but computationally expensive.

© Bland'’s rule: Choose the smallest indices jo and ip. That is, choose

Jo=argmin{j € J : ¢g >0} costs: O(n)

. . , bj
Ilp = Min §arg min — .
i€l aj>0 | ajj,
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LSimpIex Algorithm
LDegeneracy

Degeneracy
Consider the problem

max 2x; — X + 8x3
2x3 <1
2x1 —4xo+6x3 <3
—x1+3x0+4x3 <2

x1,X2,x3 2 0.
Adding slack variables we have that
x3= 140 4+ 0 —2x3

X5 = 3—2x1+ 4xo — b6x3

X6 = 24+ x1—3x0—4x3
z= 0+2x1 —xp 4+ 8x3
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|—Simplex Algorithm
LDegeneracy

Degeneracy

If any of the basic variables are zero, then we say that the solution is

degenerate.
Consider the initial dictionary:

X4 = 1—|—0 —|—0 —2X3
X = 3—2x1+4x —6x3
Xe = 24+x3—3x—4x3

z= 0+4+2x1 —x +8x3

If x3 enters then who leaves?

16/33



LSimpIex Algorithm
LDegenelracy

Degeneracy
If any of the basic variables are zero, then we say that the solution is
degenerate.
Consider the initial dictionary:
X4 = 1 + 0 + 0 — 2X3
xs = 3—2x1 +4x —6x3

Xe = 24+x3—3x—4x3
z= 0+4+2x1 —x +8x3

If x3 enters then who leaves? Both x5 and xg are set to zero, so either
one. Choosing x4 and pivoting on row 1 and column 4 we have.

x3= 0540 +0 —0.5x
xs= 0—2x3+4x+3xs

Xg = 04+ x1 —3x0 + 2x4
z= 4+ 2x1 —xo — 4dxy

Only x; can enter the basis, but it doesn't increase in value :(
Full example in lecture notes. 16/33



LSimpIex Algorithm
LDegenelracy

Bland’s rule for degeneracy

Bland's rule
Choose the smallest indices jo and iy. That is, choose

Jo=argmin{j € J : ¢ > 0}.

: : : b;
ip = min<arg min — .
giel,a;jo>0 ajj
Definition

A dictionary is degenerate if there are basic variables equal to zero.

Theorem

If Bland'’s rule is used on all degenerate dictionaries, then the simplex
algorithm will not cycle.
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|—Simplex Algorithm
LFinding an initial feasible dictionary

Finding an initial feasible dictionary

max Xy —Xo +Xx3
2x1 —x» +2x3 <4
2x1 —3x +x3 < -5
—x1 +tx —2x3 < -1
X1, X2, X3, > 0.
The point (x7', x3,x3) = (0,0,0) is not feasible.

18/33



LSimpIex Algorithm

LFinding an initial feasible dictionary

Finding an initial feasible dictionary

max Xy —Xo +Xx3
2x1  —x» +2x3 <4
2x1 —3x +x3 < -5
—x1 +tx —2x3 < -1
X1, X2, X3, > 0.

The point (x7', x3,x3) = (0,0,0) is not feasible.
Setup an auxiliary problem

max

—Xo

2x1  —Xxp +2x3 —xg <4
2x1 —3x0 +x3 —xp< -5
—x1  +x2 —2x3 —xp<—1
X1, X2, X3, X0 > 0.

For xp big enough, it will be feasible. Setup initial dictionary

18/33



LSimpIex Algorithm
LFinding an initial feasible dictionary

Initial phase one dictionary:

x1=4 =2x3 “4+x —2x3 +x

x5=-5 —=2x¢ 4+3x —x3 +Xxo
Xp = -1 +x —X2 -|-2X3 +Xo
w = —X0-

Pivot on “most infeasible” variable in the basis with the most
negative value. Thus xs leaves the basis and xg enters the basis.
Pivoting on row 2 and column 5:

19/33



LSimpIex Algorithm
LFinding an initial feasible dictionary

Initial phase one dictionary:

x1=4 =2x3 “4+x —2x3 +x

x5=-5 —=2x¢ 4+3x —x3 +Xxo
Xp = -1 +x —X2 -|-2X3 +Xo
w = —X0-

Pivot on “most infeasible” variable in the basis with the most
negative value. Thus xs leaves the basis and xg enters the basis.
Pivoting on row 2 and column 5:

rn<mn—n.
r3 < rn—nm.
W <4— w + n.

19/33



LSimp|e>< Algorithm
LFinding an initial feasible dictionary

Initial phase one dictionary:

x1=4 =2x3 “4+x —2x3 +x

X5 =—5 —2x1 +3x2 —x3 +Xxo
x5 =—-1 +x1 —x2 +2x3 +xo
w = —X0-

Pivot on “most infeasible” variable in the basis with the most
negative value. Thus xs leaves the basis and xg enters the basis.
Pivoting on row 2 and column 5:

n<n—n.

r3 < rn—nm.

W< W+ .
X3 =9 +0 —-2x —x3 +x3
Xo=>5 2x1  —3x0 +x3 +xs
X6 =4 +3x1 —4x +3x3 +x5
w=-5 —-2x3 +3x —x3 —Xs.

Now x, enters and who leaves? 10/33



LSimp|e>< Algorithm
LFinding an initial feasible dictionary

Initial phase one dictionary:

x1=4 =2x3 “4+x —2x3 +x

X5 =—5 —2x1 +3x2 —x3 +Xxo
x5 =—-1 +x1 —x2 +2x3 +xo
w = —X0-

Pivot on “most infeasible” variable in the basis with the most
negative value. Thus xs leaves the basis and xg enters the basis.
Pivoting on row 2 and column 5:

n<n—n.

r3 < rn—nm.

W< W+ .
X3 =9 +0 —-2x —x3 +x3
Xo=>5 2x1  —3x0 +x3 +xs
X6 =4 +3x1 —4x +3x3 +x5
w=-5 —-2x3 +3x —x3 —Xs.

Now x, enters and who leaves? xg leaves the basis 19/33



|—Simplex Algorithm
LFinding an initial feasible dictionary

x4 =9 +0 -2x —x3 +x3

X0 =5 2x;  —3x0 +x3 +X5
X6 =4 +3x1 —4x —+3x3 +x5
w=-5 -2x3 43x —x3 —Xxs.

Now x7 enters and who leaves? xg leaves the basis. After pivoting
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LSimpIex Algorithm
LFinding an initial feasible dictionary

x4 =9 +0 -2x —x3 +x3

X0 =5 2x;  —3x0 +x3 +X5
X6 =4 +3x1 —4xo +3x3 +x5
w=-5 -2x3 43x —x3 —Xxs.

Now x> enters and who leaves? xg leaves the basis. After pivoting

xx =1 +40.75x; +0.75x3 +40.25x5 —0.25x5
xo =2 —0.25x7 —1.25x3 +0.25x5 +0.75x5
X4 = 7 —1.5X1 —2.5X3 +0.5X5 +0.5X6
w=-2 +0.25x; +1.25x3 —0.25x5 —0.75x.

Who enters the basis now?
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LSimp|e>< Algorithm
LFinding an initial feasible dictionary

x4 =9 +0 —2X —X3 “+Xs5

X0 =5 2x1  —3x0 +x3 +x5
X = 4 +3X1 —4x +3X3 “+Xs5
w=-5 —-2x3 +3x2 —x3 —Xs.

Now x> enters and who leaves? xg leaves the basis. After pivoting
Xy = 1 —|—0.75X1 —|—O.75X3 —|—0.25X5 —O.25X6
xo =2 —0.25x7 —1.25x3 +4+0.25x5 +0.75x4
xa=7 —15x; —2bxz3 +0.5x5 +0.5x4
w=—-2 +40.25x; +1.25x3 —0.25x5 —0.75x5.
Who enters the basis now? x3
Who leaves the basis?

20/33



LSimp|e>< Algorithm
LFinding an initial feasible dictionary

x4 =9 +0 —2X —X3 “+Xs5

X0 =5 2x1  —3x0 +x3 +x5
X = 4 +3X1 —4x +3X3 “+Xs5
w=-5 —-2x3 +3x2 —x3 —Xs.

Now x> enters and who leaves? xg leaves the basis. After pivoting

Xy = 1 —|—0.75X1 —|—O.75X3 —|—0.25X5 —O.25X6
xo =2 —0.25x7 —1.25x3 +4+0.25x5 +0.75x4
xa=7 —15x; —2bxz3 +0.5x5 +0.5x4
w=—-2 +0.25x; +1.25x3 —0.25x5 —0.75xg.

Who enters the basis now? x3
Who leaves the basis?

x>0 = 2-125x3>0 = x3>2/125=1.6
x>0 = T7-25x3>0 = x3>7/25=238

Xo leaves the basis!
20/33



LSimpIex Algorithm
LFinding an initial feasible dictionary

xx =1 +0.75x; +0.75x3 +40.25x5 —0.25xg
X =2 —0.25x; —1.25x3 +0.25x5 +0.75x5
X4 = 7 —1.5X1 —2.5X3 +0.5X5 +0.5X6
w=-2 +40.25x; +1.25x3 —0.25x5 —0.75xs.

Pivoting on row 2 and column 3:

rn<n-+ ?:—;grg =r +0.6n.

r3 < r3—2n.

W< w+ n.

xp =22 +40.6x; +0.4xs +0.2x¢ —0.6x9

x3=16 —-0.2x7 +0.2x5 +0.6xs —0.8x

X4 =3 —Xx1 —X6 +2xp
w =

Feasible basis without xg!
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LSimpIex Algorithm
LFinding an initial feasible dictionary

xx =1 +0.75x; +0.75x3 +40.25x5 —0.25xg
X =2 —0.25x; —1.25x3 +0.25x5 +0.75x5
xqg =7 —1.5x —2.5x3 +0.5x5 +0.5x¢
w=-2 +40.25x; +1.25x3 —0.25x5 —0.75xs.
Pivoting on row 2 and column 3:
rn4<n-+ %rg =r +0.6n.
r3 < r3—2n.
W< w+ n.
xp =22 +40.6x; +0.4xs +0.2x¢ —0.6x9
x3=16 —-0.2x7 +0.2x5 +0.6xs —0.8x
X4 =3 —Xx1 —X6 +2xp
w =

Feasible basis without x! Remove column with xp and replace w with z.

xp =22 40.6x; +0.4x5 +0.2xg

X3 = 1.6 —0.2X1 +0.2X5 +0.6X5

X4 = 3 —X1 —Xo6
z = —+Xx1 —Xp X3
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|—Simplex Algorithm
|—Finding an initial feasible dictionary

xp =22 +0.6x; +0.4x5
x3 =16 —0.2x; +0.2x5
X4 = 3 —X1

Eliminate base variables x, and x3 from z:

+0.2X6
+0.6X6
_X6
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|—Simplex Algorithm
|—Finding an initial feasible dictionary

xp =22 +0.6x; +0.4x5
x3=16 —0.2x; +0.2x5
X4 = 3 —X1

Eliminate base variables x, and x3 from z:

Z = X1 —Xo+Xx3

+0.2X5
+0.6X6

—Xg

22/33



|—Simplex Algorithm
LFinding an initial feasible dictionary

xp =22 40.6x; +0.4xs +0.2xg
x3=16 —0.2x; +0.2x5 +0.6xg

X4 = 3 —X1 —Xo6
Eliminate base variables x, and x3 from z:
Z = X1 —Xo+Xx3

x; — (2.24 0.6x; + 0.4x5 + 0.2x6) + (1.6 — 0.2x1 + 0.2x5 + 0.6x5)
—0.6 +0.2x3 — 0.2x5 + 0.4x6.
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LSimpIex Algorithm
LFinding an initial feasible dictionary

xp =22 40.6x; +0.4xs +0.2xg
x3=16 —0.2x; +0.2x5 +0.6xg

X4 = 3 —X1 —Xo6
Eliminate base variables x, and x3 from z:
Z = X1 —Xo+Xx3

x; — (2.24 0.6x; + 0.4x5 + 0.2x6) + (1.6 — 0.2x1 + 0.2x5 + 0.6x5)
—0.6 +0.2x3 — 0.2x5 + 0.4x6.

So the initial basis is

xp =22 +0.6x; +0.4xs +0.2x
x3 =16 —0.2x; +0.2xs +0.6x
X4 = 3 —X1 —Xp

z=-0.6 +4+0.2x3 —-0.2x3 +0.4x¢

Now apply the simplex again!
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|—Duality

Upper Bounds Using Duality

The LP in standard form

def
maXx z = CTX
X

subject to Ax < b,
x>0, (LP)

We want to find w € R so that z = ¢T x < w for all x € R".
Combine rows of constraints?

23/33



LDuaIity

Upper Bounds Using Duality

The LP in standard form

def
maXx z = CTX
X

subject to Ax < b,
x>0, (LP)
We want to find w € R so that z = ¢T x < w for all x € R".
Combine rows of constraints?
Look for y > 0 € R™ so that yT A > ¢ so that
c'x< (yTA)x <yTb=w.
Can we make this upper bound as tight as possible? Yes, by minimizing

yTb. That is, we need to the dual linear program.
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|—Duality

Dual definition

def
max z = CTX
X

subject to Ax < b,
x>0, (P) Primal (1)

. def
minw = yTh
y

subject to ATy > ¢,
y > 0. (D) Dual (2)
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Dual definition

def
maXx z = CTX
X

subject to Ax < b,
x>0, (P) Primal (1)
min w if_yTib
y
subject to ATy > ¢,
y >0. (D) Dual (2)
Exe: Show that the dual of the dual is the primal.
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Dual definition

def
maXx z = CTX
X

subject to Ax < b,
x >0, (P) Primal
min w & y'b
y
subject to ATy > ¢,
y >0. (D) Dual
Exe: Show that the dual of the dual is the primal.

Lemma (Weak Duality)

(1)

If x € R" is a feasible point for (1) and y € R™ s a feasible point for (2)

then
c'x<yTAx<yTh.

(3)
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Weak Duality

Lemma (Weak Duality)

If x € R™ is a feasible point for (1) and y € R™ s a feasible point for (2)
then
c'x<y"Ax<y'bh. (4)

Consequently

» If (1) has an unbounded solution, that is ¢ x — oo, then

25/33



LDuaIity

Weak Duality

Lemma (Weak Duality)

If x € R™ is a feasible point for (1) and y € R™ s a feasible point for (2)
then
c'x<y"Ax<y"b. (4)

Consequently

» If (1) has an unbounded solution, that is c"x — oo, then there
exists no feasible point y for (2)

» If (2) has an unbounded solution, that is y T b — —oo, then
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Weak Duality

Lemma (Weak Duality)

If x € R" is a feasible point for (1) and y € R™ is a feasible point for (2)
then
c'x<y"Ax<y"b. (4)

Consequently

» If (1) has an unbounded solution, that is c"x — oo, then there
exists no feasible point y for (2)

» If (2) has an unbounded solution, that is y T b — —o0, then there
exists no feasible point x for (1)

» [f x and y are primal and dual feasible, respectively, and
c"x=yT"b, then
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L Duality

Weak Duality

Lemma (Weak Duality)

If x € R" is a feasible point for (1) and y € R™ is a feasible point for (2)
then
c'x<y"Ax<y"b. (4)

Consequently

» If (1) has an unbounded solution, that is ¢ " x — oo, then there
exists no feasible point y for (2)

» [f (2) has an unbounded solution, that is y ' b — —oc, then there
exists no feasible point x for (1)

» If x and y are primal and dual feasible, respectively, and
c"x =y"h, then x and y are the primal and dual optimal points,

respectively.

25/33
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Strong Duality

Theorem (Strong Duality)

If (1) or (2) is feasible, then z* = w*. Moreover, if c* is the cost vector
of the optimal dictionary of the primal problem (1), that is, if

z=z*—|—Zc,-*x,-, (5)

i=1

theny; = —c;  fori=1,...,m.

Thus distance to optimal is given by

Z—w = yTb—ch > 0.
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LDuaIity

Strong Duality

Theorem (Strong Duality)

If (1) or (2) is feasible, then z* = w*. Moreover, if c* is the cost vector
of the optimal dictionary of the primal problem (1), that is, if

z:z*—i—Zc,-*x,-, (5)

theny; = —c;  fori=1,...,m.

Thus distance to optimal is given by
z—w =y b—c'x > 0.

Proof: First ¢ <0 fori=1,...,m+ n because dictionary is optimal.
Consequently y = —¢c;,; >0fori=1,...,m.
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Strong duality: Proof |

By the definition of the slack variables we have that

n
Xn+i:bi—zainj, fori=1,...,m. (6)
j=1
Consequently, setting y;" = —c,,;, we have that
n n+m
z @ z" + Z ¢+ Z ¢ xi
Jj=1 i=n+1

_
K

= 24y gy yibi—) apx)
j=1 i=1 j=1
= bty (Cj* + ny*afj> X
i-1 =1 i—1

n

def of

fastz chxj, VX1, ..oy Xn. (7)
j=1

Last line followed by definition z = ZJ'.’:l ¢x;. Since the above holds for all

x € R", we can match the coefficients. 27/33
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Strong duality: Proof Il
2= bty (q*+ZYi*aU>)<j = > ax
i=1 j=1 i=1 j=1

Matching coefficients on x;'s we have

m
= Db
=1

m
G = cj*—i—Zy,-*a,-j, forj=1,...,n.
i=1
Since ¢ <0 for j=1,...,n, the above is equivalent to

m
Z* _ Z y,‘* bi
i=1

m
Zy,-*a,-j < g, forj=1,...,n.
i=1

(8)

9)

(10)

(11)

(11) = y;* is feasible for (2). (10) = z* =7, v/ b = w, consequently by

weak duality the y*'s are dual optimal. [J
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|—Duality

How to calculate dual solution y?
By strong duality

CTX* — (y*)TAX* — (y*)Tb.
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How to calculate dual solution y?
By strong duality

CTX* _ (y*)TAX* _ (y*)Tb.

Subtracting (y*) T Ax* from all sides of the above gives

_ AT * T — — *\ T o *
(c—A"y*) x 0 (v)' (b—Ax*).
0 >0
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How to calculate dual solution y?
By strong duality

CTX* _ (y*)TAX* _ (y*)Tb.

Subtracting (y*) T Ax* from all sides of the above gives

_ AT * T — — *\ T o *
(c—A"y*) x 0 (v)' (b—Ax*).
0 >0

Re-writing the above in element form we have that

n

n m m
d(G=D e = 0 = Y yi(bi=) @)
i=1 i=1 J

j=1 j=1
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How to calculate dual solution y?
By strong duality

CTX* _ (y*)TAX* _ (y*)Tb.
Subtracting (y*) T Ax* from all sides of the above gives
_AT w1 x _ 0 _ *\ T b— Ax*).
(e-Ay) x () (b= A
>0 >0

Re-writing the above in element form we have that

n n

m m
d(G=D e = 0 = Y yi(bi=) @)
i=1 i=1 J

j=1 j=1

Sum over positive numbers equal zero thus
n

y,-*(b,-—ZaU@*) = 0, Vi=1,...,m.
j=1

m
X(G—Y apyf) = 0, W=1...n
i=1
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How to calculate dual solution y?

n

y,-*(b,-—ZaU@*) = 0, Vi=1,....,m.
=1
Jm

)g*(cj—ZaUy,-*) = 0, Vj=1,...,n
i=1

This gives the following rule for computing y*.

n
dayyt = g, Yefl,....n} x>0
i=1

Question: If x* is non-degenerate, how many x; > 07

y,'* 0, Vi e {1, . .,m}, b,' > Za’JXJ*
Jj=1
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|—Duality

Complementary slackness

Since b; > 3711 ajx’ = xy,; >0 we have
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Complementary slackness
Since b > > 7, ajxt = xi,; > 0 we have

J
n
Zaijyi* = ¢, Vje{l,...,n}, x*>0.
i=1

.y,'* = 0, VIE{I,,m}, X:+’.>O'
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Complementary slackness

Since b; > 3711 ajx’ = xy,; >0 we have

n
Sapi = g, Vie{l...n} x>0,
i=1

y,'* = 0, Vie{l,...,m}, X:+’.>O'

Finally
n
Za,-jy,-* =qg = Ay =g¢ (J indices of Basic variables)
i=1

Exercise on calculating dual variables

maxz = 4x +3x
bx1 +3x» <30 If Xik = 3,X2* =5
2xq +3x% <24  Theny; =3,y5 =0,y =1
x1 +3x <18
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Exercise on calculating dual variables

maxz = 4x, +3x
bx; +3x <30 If xf =3,x3 =5
2x3 +3x <24 Then yf = %,yz* =0,y5 = %
x1 +3x <18

Test for complementarity:
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Exercise on calculating dual variables

maxz = 4x, +3x
bx; +3x <30 If xf =3,x3 =5
2x3 +3x <24 Then yf = %,yz* =0,y5 = %
x1 +3x <18

Test for complementarity:

5x; +3% =5%x343x5=30 = y#0
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Exercise on calculating dual variables

maxz = 4x, +3x
bx; +3x <30 If xf =3,x3 =5
2x3 +3x <24 Then yf = %,y2* =0,y5 = %
x1 +3x <18

Test for complementarity:

5x; +3% =5%x343x5=30 = y#0

2% 43 =2%3+3%5=21 < 24 = yi=0
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Exercise on calculating dual variables

maxz = 4x, +3x
bx; +3x <30 If xf =3,x3 =5
2x3 +3x <24 Then yf = %,yz* =0,y5 = %
x1 +3x <18

Test for complementarity:

5x; +3% =5%x343x5=30 = y#0
2 +3x =243+3x5=21 <24 = yI=0
X{+3x% =3+3%x5=18 = y; #0.
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Exercise on calculating dual variables

maxz = 4x, +3x
5x1 +3x <30 If xf =3,x3 =5
2x1 +3xp <24 Then yf = %,yz* =0,y5 = }1
x; +3x <18

Test for complementarity:
5x; +3% =5%x343x5=30 = y#0
2x7 +3% =2%x343x5=21 <24 = y;=0

X +3x =3+3%x5=18 = yI #£0.
Setup linear system > ., a;y;" = ¢;,Vj with x;* > 0:

4 3
1|5 +3x
y2 | 2x1 +3x
3| X1 +3x
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Exercise on calculating dual variables

maxz = 4x, +3x
5x1 +3x <30 If xf =3,x3 =5
2x1 +3xp <24 Then yf = %,yz* =0,y5 = }1
x; +3x <18

Test for complementarity:
5x; +3% =5%x343x5=30 = y#0
2x7 +3% =2%x343x5=21 <24 = y;=0

X +3x =3+3%x5=18 = yI #£0.
Setup linear system > ., a;y;" = ¢;,Vj with x;* > 0:

4 3
Bx; +3x 43
)41 X1 > (remove y») vl Bx +3%
Y| 2 +3x = « 13x
sl x1 +3x 3 1 2

32/33



LDuaIity

Exercise on calculating dual variables

maxz = 4x, +3x
5x1 +3x <30 If x{ =3,x =5
2xq +3x <24  Theny; =3,y5 =0,y =1
x; +3x <18

Test for complementarity:
5x; +3% =5%x343x5=30 = y#0
2x7 +3% =2%x343x5=21 <24 = y;=0

X +3x =3+3%x5=18 = yI #£0.
Setup linear system > ., a;y;" = ¢;,Vj with x;* > 0:

4 3 4 3
y1|5x1 4+3x> (remove y2) (transpose) |5 1| |w»1 4
R A o A [3 3] M = [3]
y3 X1 +3X2 % X 3%
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G.,R & P Richtdrik, Randomized lterative Methods for Linear
Systems arXiv:1506.03296
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