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informative: tight with realistic assumptions       inform parameter choices and 
implementations
saves time for practitioners: Less hyper-parameter tuning       works out of the box
saves time for theorists: Simplify and unifies existing theory.

Case study today:  Learning rates/stepsizes and minibatch size for SGD and 
stochastic variance reduced methods SAGA and SVRG



Sampled i.i.d
  

The Stochastic Gradient Method

Step size/
 Learning rate



Sampled i.i.d
  

The Stochastic Gradient Method

Step size/
 Learning rate

What about 
mini-batching
What about 
mini-batching



Minibatch where

The Stochastic Gradient Method



Minibatch where

The Stochastic Gradient Method

 What should b be?



Minibatch where

The Stochastic Gradient Method

 What should b be?
 How does b influence the stepsizes?



Minibatch where

The Stochastic Gradient Method

 What should b be?
 How does b influence the stepsizes?
 How does the data influence the best 

mini-batch and stepsize?
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Definition Definition 

Bigger smoothness constant/ stronger assumption

Needell, Srebro, Ward: Math. Prog, 2016.
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notion of smoothness

When n is big
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Definition: Gradient noiseDefinition: Gradient noise

Generalization of 
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Proof is SUPER EASY:

Taking expectation with respect to

Taking total expectation
Lemma Lemma 

quasi strong conv
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Total complexity for mini-batch SGD

Total complexity is a simple 
function of mini-batch size b

#stochastic gradient
 evaluation in 1 iteration
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that interpolate data

Linearly increasing

increases with b

All gains in mini-batching are due to 
multi-threading and cache memory?
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Stochastic Gradient Descent with 
switch to decreasing stepsizes

Switch point
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What to do about the variance?
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Linear approximationLinear approximation

Choosing the covariate

We would like:

A reference point/ snap shot
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SVRG: Stochastic Variance Reduced 
Gradients 

Freeze reference point 
for m iterations

Weighted average of 
inner iterates

Jonhson & Zhang, NIPS 2013 

Sebbouh, Gazagnadou, Jelassi, Bach, Gower, 2019 
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SAGA: Stochastic Average Gradient

Stores a         matrixNo inner loop, rolling update



Complexity of Variance Reduced
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Total Complexity of mini-batch 
SAGA

Linearly increasing Linearly decreasing

Always smaller
than 25% of data

Gazagnadou, G & Salmon, ICML 2019
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SAGA So accurate, close to empirical best mini-batch size 
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RMG, P. Richtarik, F. Bach (2018), preprint online 
Stochastic quasi-gradient methods: Variance 
reduction via Jacobian sketching

N. Gazagnadou, RMG, J. Salmon (2019) , ICML 2019. 
Optimal mini-batch and step sizes for SAGA 

RMG, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, 
Egor Shulgin and Peter Richtárik (2019), ICML
 SGD: general analysis and improved rates

O. Sebbouh, N. Gazagnadou, S. Jelassi, F. Bach, RMG 
(2019), preprint online. Towards closing the gap 
between the theory and practice of SVRG
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Learning rate schedules
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Theorem Theorem 

Fixed stepsize 

saves time for theorists: Includes GD and 
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