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References for todays class

Amir Beck and Marc Teboulle 
(2009), SIAM J. IMAGING 
SCIENCES,  
A Fast Iterative Shrinkage-
Thresholding Algorithm
for Linear Inverse Problems.

Sébastien Bubeck (2015)
Convex Optimization: 
Algorithms and
Complexity

Chapter 1 and Section 5.1
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A Datum Function

Finite Sum Training Problem 

Optimization Sum of Terms
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The Training Problem
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Convergence GD I

Theorem

Let f be convex and L-smooth. 

Where
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Convergence GD I

Theorem

Let f be convex and L-smooth. 

Where

Not true for many 
problems 

Is f always 
differentiable?



8Change notation: Keep loss and 
regularizor separate

Loss function

The Training problem

If L or R is not 
differentiable

L+R is not 
differentiable

If L or R is not 
smooth

L+R is not 
smooth
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Non-smooth Example
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Non-smooth Example

Does not fit. 
Not smooth
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Does not fit. 
Not smooth

The problem
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Non-smooth Example

Does not fit. 
Not smooth

Need more 
tools

The problem
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Non-smooth Example

Does not fit. 
Not smooth

Need more 
tools

The problem
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Assumptions for this class

The Training problem

What does 
this mean?

Assume 
this is easy 
to solve
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Examples

SVM with soft margin

Lasso

Low Rank Matrix Recovery
Not smooth, 
but prox is 
easy

Not smooth
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Convexity: Subgradient
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Convexity: Subgradient

g =0
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Examples: L1 norm
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Optimality conditions

The Training problem
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Working example: Lasso

Lasso

Difficult 
inclusion, do 
iteratively.
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Proximal method I

The w that minimizes the upper bound gives gradient descent
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Proximal method I

The w that minimizes the upper bound gives gradient descent

But what about R(w)? Adding on +         to upper bound:
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Proximal method I

The w that minimizes the upper bound gives gradient descent

But what about R(w)? Adding on +         to upper bound:

Can we minimize the 
right-hand side?



25Proximal method: iteratively minimizes 
an upper bound
Minimizing the right-hand side of



26Proximal method: minimizes an 
upperbound viewpoint
Set y = wt and minimize the right-hand side in w 

This suggests an 
iterative method



27Proximal method: minimizes an 
upperbound viewpoint
Set y = wt and minimize the right-hand side in w 

This suggests an 
iterative method

What is this 
prox operator?
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EXE: Let 

Show that

Gradient Descent using proximal map

A gradient 
step is also a 
proximal step



29Proximal Operator: Well defined 
inclusion

EXE: Is this Proximal operator well defined? Is it even a function?



30Proximal Operator: Well defined 
inclusion

EXE: Is this Proximal operator well defined? Is it even a function?



31Proximal Operator: Well defined 
inclusion

Rearranging

EXE: Is this Proximal operator well defined? Is it even a function?



32Proximal Method: A fixed point 
viewpoint

The Training problem
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35Proximal Method: A fixed point 
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The Training problem



36Proximal Method: A fixed point 
viewpoint

The Training problem

Optimal is a fixed point 



37Proximal Method: A fixed point 
viewpoint

The Training problem

Optimal is a fixed point 

Upperbound viewpoint
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Proximal Operator: Properties 

Exe:
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Proximal Operator: Soft thresholding 

Exe:



41Proximal Operator: 
Singular value thresholding

Similarly, the prox of the nuclear norm for matrices:



42Proximal method: iteratively minimizes 
an upper bound
Minimizing the right-hand side of

Make iterative 
method based on 
this upper bound 
minimization
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The Proximal Gradient Method



44Example of prox gradient: Iterative Soft 
Thresholding Algorithm (ISTA)

Lasso

Amir Beck and Marc Teboulle (2009), SIAM J. IMAGING SCIENCES,  
A Fast Iterative Shrinkage-Thresholding Algorithm
for Linear Inverse Problems.

ISTA:
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Convergence of Prox-GD
Theorem (Beck Teboulle 2009)

Then

where

Amir Beck and Marc Teboulle (2009), SIAM J. IMAGING SCIENCES,  
A Fast Iterative Shrinkage-Thresholding Algorithm
for Linear Inverse Problems.
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Convergence of Prox-GD
Theorem (Beck Teboulle 2009)

Then

where

Can we do better?

Amir Beck and Marc Teboulle (2009), SIAM J. IMAGING SCIENCES,  
A Fast Iterative Shrinkage-Thresholding Algorithm
for Linear Inverse Problems.
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The FISTA Method
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The FISTA Method

Weird, but it works
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Convergence of FISTA
Theorem (Beck Teboulle 2009)

Then

Where wt are given by the FISTA algorithm

Amir Beck and Marc Teboulle (2009), SIAM J. IMAGING SCIENCES,  
A Fast Iterative Shrinkage-Thresholding Algorithm
for Linear Inverse Problems.
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Convergence of FISTA
Theorem (Beck Teboulle 2009)

Then

Where wt are given by the FISTA algorithm

Is this as good as it 
gets?

Amir Beck and Marc Teboulle (2009), SIAM J. IMAGING SCIENCES,  
A Fast Iterative Shrinkage-Thresholding Algorithm
for Linear Inverse Problems.
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Lab Session 30.09

Room C129 and C130

Bring your laptop 
Please install:
Python, matplotlib, scipy 
and numpy  
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Introduction to Stochastic 
Gradient Descent
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General methods

Recap

● Gradient Descent

Training Problem

Two parts
● Proximal gradient 

(ISTA)
● Fast proximal 

gradient (FISTA)

L(w)
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A Datum Function

Finite Sum Training Problem 

Optimization Sum of Terms

Can we use this 
sum structure?
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The Training Problem



57

The Training Problem
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Stochastic Gradient Descent

Is it possible to design a method that 
uses only the gradient of a single data 
function         at each iteration?
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Stochastic Gradient Descent

Is it possible to design a method that 
uses only the gradient of a single data 
function         at each iteration?
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Let j be a random index sampled from {1, …, n} selected 
uniformly at random. Then
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Stochastic Gradient Descent

Is it possible to design a method that 
uses only the gradient of a single data 
function         at each iteration?

Unbiased Estimate
Let j be a random index sampled from {1, …, n} selected 
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Stochastic Gradient Descent

Is it possible to design a method that 
uses only the gradient of a single data 
function         at each iteration?

Unbiased Estimate
Let j be a random index sampled from {1, …, n} selected 
uniformly at random. Then

   

 

EXE: 



62

Stochastic Gradient Descent
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Stochastic Gradient Descent

  Optimal point
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Strong Convexity 

Assumptions for Convergence
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Strong Convexity 

Assumptions for Convergence
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Expected Bounded Stochastic Gradients 

Strong Convexity 

Assumptions for Convergence
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Expected Bounded Stochastic Gradients 

Strong Convexity 

Assumptions for Convergence



68Complexity / Convergence

Theorem
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Theorem

    



71
Proof:

  Unbiased estimatorTaking expectation with respect to j

Taking total expectation
Strong conv.

Bounded 
Stoch grad



72Stochastic Gradient Descent 
α =0.01



73Stochastic Gradient Descent 
α =0.1



74Stochastic Gradient Descent 
α =0.2



75Stochastic Gradient Descent 
α =0.5
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Expected Bounded Stochastic Gradients 

Strong Convexity 

Assumptions for Convergence
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Strong Convexity 
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Expected Bounded Stochastic Gradients 

Strong Convexity 

Assumptions for Convergence
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