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Solving the Finite Sum Training 
Problem
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General methods

Recap

● Gradient Descent

Training Problem

Two parts
● Proximal gradient 

(ISTA)
● Fast proximal 

gradient (FISTA)

L(w)
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A Datum Function

Finite Sum Training Problem 

Optimization Sum of Terms

Can we use this 
sum structure?
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The Training Problem
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The Training Problem
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Stochastic Gradient Descent

Is it possible to design a method that 
uses only the gradient of a single data 
function         at each iteration?
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EXE: 
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Stochastic Gradient Descent
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Stochastic Gradient Descent

  Optimal point
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Strong Convexity 

Assumptions for Convergence
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Expected Bounded Stochastic Gradients 
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Expected Bounded Stochastic Gradients 

Strong Convexity 

Assumptions for Convergence



17Complexity / Convergence

Theorem

EXE: Do exercises on convergence of random sequences. 
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Theorem

    

EXE: Do exercises on convergence of random sequences. 



20Proof:

  Unbiased estimatorTaking expectation with respect to j

Taking total expectation
Strong conv.

Bounded 
Stoch grad



21Stochastic Gradient Descent 
α =0.01



22Stochastic Gradient Descent 
α =0.1



23Stochastic Gradient Descent 
α =0.2



24Stochastic Gradient Descent 
α =0.5
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Expected Bounded Stochastic Gradients 

Strong Convexity 

Assumptions for Convergence
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Expected Bounded Stochastic Gradients 

Strong Convexity 
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Expected Bounded Stochastic Gradients 

Strong Convexity 

Assumptions for Convergence

EXE: 
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EXE: 

Proof:

Taking expectation
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Strongly quasi-convexity 

Realistic assumptions for 
Convergence

Each fi is convex and Li smooth

Definition: Gradient Noise
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Assumptions for Convergence

EXE: Calculate the Li ’s and        for

HINT: A twice differentiable fi  is Li - smooth if and only if 
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Assumptions for Convergence

EXE:  Calculate the Li ’s and        for



38Relationship between smoothness 
constants
EXE: 

                                                                                    show that

  



39Relationship between smoothness 
constants
EXE: 

                                                                                    show that

  

Proof: From the Hessian definition of smoothness

Furthermore

The final result now follows by taking the max over w, then max over i



40Complexity / Convergence

Theorem.  

EXE: The steps of the proof are given in the 
SGD_proof exercise list for homework!  

RMG, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, P. 
Richtarik (2019) ICML 2019
SGD: General Analysis and Improved Rates.



41Stochastic Gradient Descent 
α =0.5



42Stochastic Gradient Descent 
α =0.5

1) Start with 
big steps and 
end with 
smaller steps



43Stochastic Gradient Descent 
α =0.5

2) Try 
averaging the 
points

1) Start with 
big steps and 
end with 
smaller steps



44SGD shrinking stepsize

Shrinking 
Stepsize 



45SGD shrinking stepsize

Shrinking 
Stepsize How should we  

sample j ?

Does this converge?



46SGD with shrinking stepsize 
Compared with Gradient Descent

Gradient Descent

SGD 1.0



47SGD with shrinking stepsize  
Compared with Gradient Descent

SGD 1.0

Gradient Descent



49Complexity / Convergence

Theorem for shrinking stepsizes
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Theorem for shrinking stepsizes

 

  

 



52Stochastic Gradient Descent 
Compared with Gradient Descent

Gradient Descent

SGD

Noisy iterates. 
Take averages?



53SGD with (late start) averaging

B. T. Polyak and A. B. Juditsky,  SIAM Journal on Control 
and Optimization (1992)
Acceleration of stochastic approximation by averaging



54SGD with (late start) averaging

B. T. Polyak and A. B. Juditsky,  SIAM Journal on Control 
and Optimization (1992)
Acceleration of stochastic approximation by averaging

This is not 
efficient. How to 
make this efficient?



55Stochastic Gradient Descent 
With and without averaging

Starts slow, but 
can reach higher 
accuracy



56Stochastic Gradient Descent 
With and without averaging

Starts slow, but 
can reach higher 
accuracy

Only use 
averaging 
towards the end?



57Stochastic Gradient Descent 
Averaging the last few iterates

Averaging starts here



58Comparison GD and SGD for strongly 
convex  SGD GD

Iteration 
complexity
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62Comparison GD and SGD for strongly 
convex  SGD GD

Iteration 
complexity

Cost of an 
interation

Total 
complexity*

What happens if n is big?What happens if    is small?
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Comparison SGD vs GD

time

SGD

M. Schmidt, N. Le Roux, F. Bach (2016)
Mathematical Programming 
Minimizing Finite Sums with the Stochastic Average 
Gradient.



69
Comparison SGD vs GD

time

SGD

M. Schmidt, N. Le Roux, F. Bach (2016)
Mathematical Programming 
Minimizing Finite Sums with the Stochastic Average 
Gradient.



70
Comparison SGD vs GD

time

SGD

GD

M. Schmidt, N. Le Roux, F. Bach (2016)
Mathematical Programming 
Minimizing Finite Sums with the Stochastic Average 
Gradient.
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Comparison SGD vs GD

time

SGD

GD

Stoch. Average 
Gradient (SAG)

M. Schmidt, N. Le Roux, F. Bach (2016)
Mathematical Programming 
Minimizing Finite Sums with the Stochastic Average 
Gradient.
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Practical SGD for Sparse Data
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Finite Sum Training Problem 

Lazy SGD updates for Sparse Data
L2 regularizor + 
linear hypothesis

Assume each data point xi is s-sparse, how 
many operations does each SGD step cost?
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Finite Sum Training Problem 

Lazy SGD updates for Sparse Data
L2 regularizor + 
linear hypothesis

Assume each data point xi is s-sparse, how 
many operations does each SGD step cost?

Rescaling 
O(d)

Addition sparse 
vector O(s)



76

SGD step

Lazy SGD updates for Sparse Data

EXE: 



77

SGD step

Lazy SGD updates for Sparse Data
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SGD step

Lazy SGD updates for Sparse Data

EXE: 
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SGD step

Lazy SGD updates for Sparse Data

O(1) scaling + 
O(s) sparse add 
= O(s) update

EXE: 
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Why Machine Learners Like SGD
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The statistical learning problem:
Minimize the expected loss over an unknown expectation 

Why Machine Learners like SGD

SGD can solve the 
statistical learning problem!
SGD can solve the 
statistical learning problem!

Though we solve:

We want to solve:
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The statistical learning problem:
Minimize the expected loss over an unknown expectation 

Why Machine Learners like SGD
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Exercise List time! Please solve:

stoch_ridge_reg_exe
SGD_proof_exe
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Appendix
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