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1 Introduction

Consider the problem
1 n
w” € argmin (n ;in(w) = f(ﬂ))) : (1)
where we assume that f(w) is py—strongly quasi-convex
* * IJ/ *
Fw™) = fw) + (" —w, VF(w)) + 5w —w?, (2)
and each f; is convex and L;—smooth
Lz‘ 2 .
fitw +h) < fi(w) +(Vfi(w), h) + |[Al", fori=1,....n. (3)
Here we will provide a modern proof of the convergence of the SGD algorithm
1
wt = w — 'V, (w'), where i; ~ e (4)
The result we will prove is given in the following theorem.

Theorem 1.1. Assume f is u-quasi-strongly convex and the f;’s are convex and L;—smooth. Let

Lmax = maxX;=1,...n Lz and let
n

def 1 N
ol = Z;HVfi(w )12 (5)
i=1
Choose 7 =~ € (0, ﬁ] for all ¢. Then the iterates of SGD given by (4) satisfy:
Eflw’ — w*|2 < (1 —yp)° lu’ — w2 + 2. (6)

2 Proof of Theorem 1.1

We will now give a modern proof of the convergance of SGD.



Ex. 1 — Let E;[/] iy [-|w'] and consider the tth iteration of the SGD method (4). Show that

E; [Vfit (wt)] = Vf(wh).

Answer (Ex. 1) — Since i; ~ 1/n we have that
¢ [V i (w Z Vfi(wh) = Vf(wh).
Ex. 2 — Let E;[] ) [-|w'] be the expectation conditioned on w'. Using a step of SGD (4)
show that
* * * g 1
E [0 —w*|?] = [l = w[? =2y (w' —w*, V() +77 ) ~IVA@IIE (@)
i=1

Answer (Ex. 2) — By using (4) we have that
C— w2y (wh = w0, Vi, (') + 22V fi(wh)]P (8)

Since i; is the only random variable conditioned on w! we have that

E; [(w' —w*, Vfi,(w')] = (0’ —w* B¢ [V fi,(w')]) = (0" —w*, Vf(w')).
Consequently applying E; [-] to (8) gives the result.

lw™! —w** = Jlw

Ex. 3 — Now we need to bound the term " ; 1||V f;(w")||* to continue the proof. We break
this into the following steps.

Part 1

Using that each f; is Ly—smooth and convex and using Lemma A.l in the appendix show that

n

ZM IV filw) = V@)IE < flw) = fw?). (9)

=1
Hint: Remember that V f(w*) = 0.
Now let Lyax = max;—1,.., L; and conlude that

- 1 * *
> CIVAiw) = V@I < 2Lma(f(w) = f(7). (10)
i=1
Part 11
Using (10) and Definition 5 show that

n

Z%vai(w)\ﬁ < ALmax(f(w) = f(w")) +20°. (11)

i=1



Answer (Ex. I) — From Lemma A.1 we have, after re-arranging, that

(w) = VAW < filw) = fiy) + (Vi) y —w). (12)
Plugin y = w*, dividing the above by n and summing over ¢ = 1,...,n gives
11
Z oz, 1V Filw) - Vi < flw) = fw") +(Vf(w*),w* —w), (13)
where we used that I | Lfi(w) = f(w). The result (9) now follows from that Vf(w*) = 0.

Finally (10) follows from Lpyax > L; so that

n

> oIV A) = VA £ 3" 5 IVAw) = V@B < fw) - ),

i=1 =1

Answer (Ex. IT) — Using that (a + b)? < 2a% + 2b? for any a,b € R we have that

S UIVA@ VAP < 23 Vi) - Vi HQHZfHVﬂ )2
i=1 =1
(10)+(5) ) ,
< ALl () — () + 207 (14)

Ex. 4 — Using (11) together with (7) and the strong quasi-convexity (2) of f(w) show that

Ee [w™ —w*lP] < (1= pn)lw’ —w | +29(2yLmax — D (f(w') = f(w")) +20%y. (15)

Answer (Ex. 4) — Follow immediatly.

Ex. 5 — Using that v € (0, ﬁ] conclude the proof by taking expectation again, and unrolling
the recurrence.

Answer (Ex. 5) — Since v € (0, ﬁ] we have that (27Lmax — 1) < 0. Furthermore f(w') —
f(w*) > 0 thus, by taking expectation and using the tower, from (15) we have that

E o™ —w*P] < (1-p)E o' —w|?] +20%, (16)

Let iy =E [||wtJrl — w*HQ] . The above gives the following recurrence

repr < (1= py)re 4 20%y
< (1= py)?ree1 + (1= py)20%° + 2074
t .
< (L—py)Mro+ Y (1 py) 207

J=0



Summing up the geometric series we have that

t
j_ 1= —py™t 1
> (1—py) = <
— IL—(1—py) — py
]_
Thus 5 o )
20 20
rev < (1= py)+ro + TJ = (1 — y)"*hro + 7” 0 (17)

Ex. 6 — BONUS importance sampling: Let i; ~ p; in the SGD update (4), where p; > 0 are
probabilities with > ; p; = 1. What should the p;’s be so that SGD has the fastest convergence?

3 Decreasing step-sizes
Based on Theorem 1.1 we can introduce a decreasing stepsize.

Theorem 3.1 (Decreasing stepsizes). Let f be p—strongly quasi-convex and each f; be L;—smooth

and convex. Let K & Lyax/ i and

i Lrlnax for t <A4[K]
7= (18)
% for ¢ > 4[K].

If ¢ > 4[], then SGD iterates given by (4) satisfy:

28 16[K
EHwt—w*H2<f7+f( ~| Hwo_w*”;

2 (19)

7;

Proof. Let v def (t%:f)%u and let t* be an integer that satisfies v« < 5 L:rlnax. In particular this holds

for
t* >[4k —1].

Note that 7; is decreasing in ¢ and consequently v; < 5 L — for all ¢ > ¢*. This in turn guarantees
that (6) holds for all ¢ > t* with +; in place of v, that is

20% (2t +1)2
2 (t+ 1)

E[r | < E[lr'[|* + (20)

(t+1)2

Multiplying both sides by (¢ + 1)? we obtain

202 (2t +1)°
R e =

8 2
EE|r I + =

IN



where the second inequality holds because 2;%11 < 2. Rearranging and summing from j = ¢*...¢
we obtain: . ,
Zj [+ DPE[r 2 = 5] }jii (21)
— o I
Using telescopic cancellation gives
. \ 8o2(t — t*)
(t+ DZE[lrFH* < ()%l |1 + N
Dividing the above by (¢ + 1)? gives
t*)? N 8o (t — t*
B2 < g2 4 7 0 (22)
(t+1)2 w2 (t+1)2
For t < t* we have that (6) holds, which combined with (22), gives
t*)2 ,U; t*
EllA+112 < ( 1— 012
P < e (st ) I
2 *)2
o (")
— | 8(t —t* . 23
e (- ) >

Choosing ¢* that minimizes the second line of the above gives t* = 4[K], which when inserted
into (23) becomes

16[K72 1\ 4K
El-AH2 < 1— — 012
< e ) I

o* 8(t - 2[K])

2 1)

16[K72 o? 8

< 5P+ 5, (24)
e2(t+1) pet+1

where we have used that (1 — ﬁ)h <e2forall x>1. O

A Appendix: Auxiliary smooth and convex lemma

As a consequence of the f;’s being smooth and convex we have that f is also smooth and convex.
In particular f is convex since it is a convex combination of the f;’s. This gives us the following
useful lemma.

Lemma A.1. If f is both L-smooth

£(2) < Fw) +{VFw), 2 = w) + )z — wl} (25)

and convex

f(2) = fly) + Vi), 2 —y), (26)



then we have that
F) ~ fw) < (VF)y—w) — 5= V)~ Vw)IE (1)
Proof. To prove (27), it follows that

fy) = flw) = fly) =)+ f(z) = f(w)
(26)+(25) L 9
< (VW)y =2+ (Vf(w).z —w) + Sz — w3

To get the tightest upper bound on the right hand side, we can minimize the right hand side in z,
which gives

s = w— L(Vf(w) - V(). (28)
Substituting this in gives
S - 1) = (Vi -0+ L) - T10)
(VT (w), V() ~ Vi) + 529 w) ~ VW)
= (VF()y— )~ TIVIw) = VW3 + 5 V5 (w) ~ V()3

= (Vi)y—w) - 5 IVI )~ Vi) O



