
(BONUS) Exercise List: Proving convergence of the Stochastic

Gradient Descent for smooth and convex functions.

Robert M. Gower

February 10, 2019

1 Introduction

Consider the problem

w∗ ∈ arg min
w

(
1

n

n∑
i=1

fi(w)
def
= f(w)

)
, (1)

where we assume that f(w) is µ–strongly quasi-convex

f(w∗) ≥ f(w) + 〈w∗ − w,∇f(w)〉+
µ

2
‖w − w∗‖2, (2)

and each fi is convex and Li–smooth

fi(w + h) ≤ fi(w) + 〈∇fi(w), h〉+
Li
2
‖h‖2, for i = 1, . . . , n. (3)

Here we will provide a modern proof of the convergence of the SGD algorithm

wt+1 = wt − γt∇fit(wt), where it ∼
1

n
. (4)

The result we will prove is given in the following theorem.

Theorem 1.1. Assume f is µ-quasi-strongly convex and the fi’s are convex and Li–smooth. Let
Lmax = maxi=1,...,n Li and let

σ2
def
=

n∑
i=1

1

n
‖∇fi(w∗)‖2. (5)

Choose γt = γ ∈ (0, 1
2Lmax

] for all t. Then the iterates of SGD given by (4) satisfy:

E‖wt − w∗‖2 ≤ (1− γµ)t ‖w0 − w∗‖2 + 2γσ2

µ . (6)

2 Proof of Theorem 1.1

We will now give a modern proof of the convergance of SGD.
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Ex. 1 — Let Et [·] def
= E

[
· |wt

]
and consider the tth iteration of the SGD method (4). Show that

Et
[
∇fit(wt)

]
= ∇f(wt).

Answer (Ex. 1) — Since it ∼ 1/n we have that

Et
[
∇fit(wt)

]
=

n∑
i=1

1

n
∇fi(wt) = ∇f(wt).

Ex. 2 — Let Et [·] def
= E

[
· |wt

]
be the expectation conditioned on wt. Using a step of SGD (4)

show that

Et
[
‖wt+1 − w∗‖2

]
= ‖wt − w∗‖2 − 2γ

〈
wt − w∗,∇f(wt)

〉
+ γ2

n∑
i=1

1

n
‖∇fi(wt)‖2. (7)

Answer (Ex. 2) — By using (4) we have that

‖wt+1 − w∗‖2 = ‖wt − w∗‖2 − 2γ
〈
wt − w∗,∇fit(wt)

〉
+ γ2‖∇fi(wt)‖2. (8)

Since it is the only random variable conditioned on wt we have that

Et
[〈
wt − w∗,∇fit(wt)

〉]
=
〈
wt − w∗,Et

[
∇fit(wt)

]〉
=
〈
wt − w∗,∇f(wt)

〉
.

Consequently applying Et [·] to (8) gives the result.

Ex. 3 — Now we need to bound the term
∑n

i=1
1
n‖∇fi(w

t)‖2 to continue the proof. We break
this into the following steps.

Part I

Using that each fi is Li–smooth and convex and using Lemma A.1 in the appendix show that

n∑
i=1

1

2nLi
‖∇fi(w)−∇fi(w∗)‖22 ≤ f(w)− f(w∗). (9)

Hint : Remember that ∇f(w∗) = 0.
Now let Lmax = maxi=1,...,n Li and conlude that

n∑
i=1

1

n
‖∇fi(w)−∇fi(w∗)‖22 ≤ 2Lmax(f(w)− f(w∗)). (10)

Part II

Using (10) and Definition 5 show that

n∑
i=1

1

n
‖∇fi(w)‖2 ≤ 4Lmax(f(w)− f(w∗)) + 2σ2. (11)
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Answer (Ex. I) — From Lemma A.1 we have, after re-arranging, that

1

2Li
‖∇fi(w)−∇fi(y)‖22 ≤ fi(w)− fi(y) + 〈∇fi(y), y − w〉 . (12)

Plugin y = w∗, dividing the above by n and summing over i = 1, . . . , n gives

n∑
i=1

1

n

1

2Li
‖∇fi(w)−∇fi(w∗)‖22 ≤ f(w)− f(w∗) + 〈∇f(w∗), w∗ − w〉 , (13)

where we used that
∑n

i=1
1
nfi(w) = f(w). The result (9) now follows from that ∇f(w∗) = 0.

Finally (10) follows from Lmax ≥ Li so that

n∑
i=1

1

2nLmax
‖∇fi(y)−∇fi(w)‖22 ≤

n∑
i=1

1

2nLi
‖∇fi(w)−∇fi(w∗)‖22 ≤ f(w)− f(w∗).

Answer (Ex. II) — Using that (a+ b)2 ≤ 2a2 + 2b2 for any a, b ∈ R we have that

n∑
i=1

1

n
‖∇fi(w)±∇fi(w∗)‖2 ≤ 2

n∑
i=1

1

n
‖∇fi(w)−∇fi(w∗)‖2 + 2

n∑
i=1

1

n
‖∇fi(w∗)‖2

(10)+(5)

≤ 4Lmax(f(w)− f(w∗)) + 2σ2. (14)

Ex. 4 — Using (11) together with (7) and the strong quasi-convexity (2) of f(w) show that

Et
[
‖wt+1 − w∗‖2

]
≤ (1− µγ)‖wt − w∗‖2 + 2γ(2γLmax − 1)(f(wt)− f(w∗)) + 2σ2γ2. (15)

Answer (Ex. 4) — Follow immediatly.

Ex. 5 — Using that γ ∈ (0, 1
2Lmax

] conclude the proof by taking expectation again, and unrolling
the recurrence.

Answer (Ex. 5) — Since γ ∈ (0, 1
2Lmax

] we have that (2γLmax − 1) ≤ 0. Furthermore f(wt) −
f(w∗) ≥ 0 thus, by taking expectation and using the tower, from (15) we have that

E
[
‖wt+1 − w∗‖2

]
≤ (1− µγ)E

[
‖wt − w∗‖2

]
+ 2σ2γ2. (16)

Let rt = E
[
‖wt+1 − w∗‖2

]
. The above gives the following recurrence

rt+1 ≤ (1− µγ)rt + 2σ2γ

≤ (1− µγ)2rt−1 + (1− µγ)2σ2γ2 + 2σ2γ2

...

≤ (1− µγ)t+1r0 +

t∑
j=0

(1− µγ)j2σ2γ2.
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Summing up the geometric series we have that

t∑
j=0

(1− µγ)j =
1− (1− µγ)t+1

1− (1− µγ)
≤ 1

µγ
.

Thus

rt+1 ≤ (1− µγ)t+1r0 +
2σ2γ2

µγ
= (1− µγ)t+1r0 +

2σ2γ

µ
. (17)

Ex. 6 — BONUS importance sampling: Let it ∼ pi in the SGD update (4), where pi > 0 are
probabilities with

∑n
i=1 pi = 1. What should the pi’s be so that SGD has the fastest convergence?

3 Decreasing step-sizes

Based on Theorem 1.1 we can introduce a decreasing stepsize.

Theorem 3.1 (Decreasing stepsizes). Let f be µ–strongly quasi-convex and each fi be Li–smooth

and convex. Let K def
= Lmax/µ and

γt =


1

2Lmax
for t ≤ 4dKe

2t+1
(t+1)2µ

for t > 4dKe.
(18)

If t ≥ 4dKe, then SGD iterates given by (4) satisfy:

E‖wt − w∗‖2 ≤ σ2

µ2
8

t
+

16

e2
dKe2

t2
‖w0 − w∗‖2. (19)

Proof. Let γt
def
= 2t+1

(t+1)2µ
and let t∗ be an integer that satisfies γt∗ ≤ 1

2Lmax
. In particular this holds

for
t∗ ≥ d4K − 1e.

Note that γt is decreasing in t and consequently γt ≤ 1
2Lmax

for all t ≥ t∗. This in turn guarantees
that (6) holds for all t ≥ t∗ with γt in place of γ, that is

E‖rt+1‖2 ≤ t2

(t+ 1)2
E‖rt‖2 +

2σ2

µ2
(2t+ 1)2

(t+ 1)4
. (20)

Multiplying both sides by (t+ 1)2 we obtain

(t+ 1)2E‖rt+1‖2 ≤ t2E‖rt‖2 +
2σ2

µ2

(
2t+ 1

t+ 1

)2

≤ t2E‖rt‖2 +
8σ2

µ2
,
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where the second inequality holds because 2t+1
t+1 < 2. Rearranging and summing from j = t∗ . . . t

we obtain:
t∑

j=t∗

[
(j + 1)2E‖rj+1‖2 − j2E‖rj‖2

]
≤

t∑
j=t∗

8σ2

µ2
. (21)

Using telescopic cancellation gives

(t+ 1)2E‖rt+1‖2 ≤ (t∗)2E‖rt∗‖2 +
8σ2(t− t∗)

µ2
.

Dividing the above by (t+ 1)2 gives

E‖rt+1‖2 ≤ (t∗)2

(t+ 1)2
E‖rt∗‖2 +

8σ2(t− t∗)
µ2(t+ 1)2

. (22)

For t ≤ t∗ we have that (6) holds, which combined with (22), gives

E‖rt+1‖2 ≤ (t∗)2

(t+ 1)2

(
1− µ

2Lmax

)t∗
‖r0‖2

+
σ2

µ2(t+ 1)2

(
8(t− t∗) +

(t∗)2

K

)
. (23)

Choosing t∗ that minimizes the second line of the above gives t∗ = 4dKe, which when inserted
into (23) becomes

E‖rt+1‖2 ≤ 16dKe2

(t+ 1)2

(
1− 1

2K

)4dKe
‖r0‖2

+
σ2

µ2
8(t− 2dKe)

(t+ 1)2

≤ 16dKe2

e2(t+ 1)2
‖r0‖2 +

σ2

µ2
8

t+ 1
, (24)

where we have used that
(
1− 1

2x

)4x ≤ e−2 for all x ≥ 1.

A Appendix: Auxiliary smooth and convex lemma

As a consequence of the fi’s being smooth and convex we have that f is also smooth and convex.
In particular f is convex since it is a convex combination of the fi’s. This gives us the following
useful lemma.

Lemma A.1. If f is both L–smooth

f(z) ≤ f(w) + 〈∇f(w), z − w〉+
L

2
‖z − w‖22 (25)

and convex
f(z) ≥ f(y) + 〈∇f(y), z − y〉 , (26)
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then we have that

f(y)− f(w) ≤ 〈∇f(y), y − w〉 − 1

2L
‖∇f(y)−∇f(w)‖22. (27)

Proof. To prove (27), it follows that

f(y)− f(w) = f(y)− f(z) + f(z)− f(w)

(26)+(25)

≤ 〈∇f(y), y − z〉+ 〈∇f(w), z − w〉+
L

2
‖z − w‖22.

To get the tightest upper bound on the right hand side, we can minimize the right hand side in z,
which gives

z = w − 1

L
(∇f(w)−∇f(y)). (28)

Substituting this in gives

f(y)− f(w) =

〈
∇f(y), y − w +

1

L
(∇f(w)−∇f(y))

〉
− 1

L
〈∇f(w),∇f(w)−∇f(y)〉+

1

2L
‖∇f(w)−∇f(y)‖22

= 〈∇f(y), y − w〉 − 1

L
‖∇f(w)−∇f(y)‖22 +

1

2L
‖∇f(w)−∇f(y)‖22

= 〈∇f(y), y − w〉 − 1

2L
‖∇f(w)−∇f(y)‖22.
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